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Hydrodynamics of sailing of the Portuguese
man-of-war Physalia physalis

G. Iosilevskii* and D. Weihs

Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel

Physalia physalis, commonly known as the Portuguese man-of-war (PMW), is a peculiar
looking colony of specialized polyps. The most conspicuous members of this colony are the
gas-filled sail-like float and the long tentacles, budding asymmetrically beneath the float.
This study addresses the sailing of the PMW, and, in particular, the hydrodynamics of its
trailing tentacles, the interaction between the tentacles and the float and the actual sailing
performance. This paper attempts to provide answers for two of the many open questions
concerning P. physalis: why does it need a sail? and how does it harness the sail?

Keywords: Physalia physalis; Portuguese man-of-war; hydrodynamics of sailing;
slender body theory
1. INTRODUCTION

Physalia physalis (phylum: Cnidaria, class: Hydrozoa,
order: Siphonophora, family: Physaliidae), also known
as the Portuguese man-of-war (PMW for short) or the
blue bottle, is a colony of numerous polyps (Totton &
Mackie 1960; Bardi & Marques 2007). One of these
polyps develops into a gas-filled float that looks like a
sail (pneumatophore); others develop into digesting
polyps (gastrozooids), reproductive polyps (gono-
zooids) and long hunting tentacles (dactylozooids).
The float is asymmetric, with tentacles budding off-
centre on approximately half of its length (figure 1).
The population of the PMW is divided between those
having their tentacles to the right of the sail and sailing
on the starboard tack, and those having their tentacles
to the left of sail and sailing on the port tack.
Hydrodynamic aspects of the PMW sailing are the
subject matter of this study.

To avoid ambiguity, this is perhaps the right place to
define what ‘left’ and ‘right’ directions are for the
PMW. To this end, consider a PMW sailing as in
figure 2a. Were this PMW a sail boat rigged only
with a mainsail, its sailing posture could have been
replicated either by heading close to the wind and
drifting downwind (figure 2b), or by sailing on a broad
reach (figure 2c). In the first case, the sail boat is
trimmed with the sail sheeted in, and a sea anchor
attached to its left side, near the mast. In the second
case, the sail boat is trimmed with the sail sheeted
out towards the bow, and possibly no anchor at all. This
sail position is rather unusual for a sail boat (it may
even be inadmissible mechanically), but can be easily
demonstrated on a sailboard. We believe that the first
case better represents the sailing PMW,mainly because
of its sail orientation relative to the body. Hence, we
orrespondence (igil@aerodyne.technion.ac.il).
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place the bow of the PMW at its oral end, where the
tentacles are, inferring fore and aft directions accor-
dingly. Left and right directions will be defined as if
standing on the vessel and facing the bow. Thus, the
PMW depicted in figure 2a has the sail on its right and
the tentacles on its left. Totton &Mackie (1960, p. 316)
defined this configuration as ‘right-handed’.

When addressing the hydrodynamics of the sailing of
the PMW one cannot avoid mentioning another natural
sailor, Velella velella (Francis 1991). The two are
comparably rigged, but have very different underwater
parts reflecting their feeding strategies. The PMW has
a few very long tentacles that slowly drag behind the
animal deep below the water surface; V. velella has
many short tentacles that apparently work as a rake,
collecting food from the water surface as the animal
skims along. Although it is possible that the two have
developed comparable mechanisms to harness their
sails, they certainly deserve separate studies. This
study is concerned with the PMW only.
2. A TRAILING TENTACLE

Consider a single tentacle of length l and uniform
diameter d trailing through the water by being pulled
horizontally with constant velocity v at its upper end.
The forces acting on the trailing tentacle can be
associated with gravity and its motion. The forces
associated with gravity are given by

Fg Z
p

4
ðrtKrÞd2gl; ð2:1Þ

where rt, r and g are the density of the tentacle,
the density of water and the acceleration of gravity,
respectively. The forces associated with the motion can
be separated into tangential and normal components,
which are assumed to be given, per unit length of a
tentacle, by the constitutive relations
J. R. Soc. Interface (2009) 6, 613–626
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Figure 1. P. physalis. Photograph by A. E. Migotto, Center of
Marine Biology, University of Sao Paulo, Brazil.
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Figure 2. (a) Top view of a right-handed PMW sailing on the
port tack, (b) a sail boat drifting with a sea anchor and
(c) a sail boat on a broad reach.
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tdCD;t; fn Z
1

2
rv 2

ndCD;n; ð2:2Þ

where CD,t and CD,n are the drag coefficients of the
tentacle in axial flow and cross-flow, whereas vt and vn
are the respective velocity components. CD,t and CD,n

are estimated in appendix A as approximately 0.01 and
approximately 1, respectively; rtKr is estimated as a
few hundredths of r.

It is shown in appendix B that under the influence of
these forces the trailing tentacle remains straight. Its
angle with the vertical,

qZ arcsin
K1C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4P 2

p

2P

 !
; ð2:3Þ

is governed by a single dimensionless parameter,

P Z
r

rtKr

2CD;nv
2

pgd
; ð2:4Þ

representing the ratio of hydrodynamic to gravity
forces (see (B 21) and (B 6)).1 The dependence of q

on P is depicted in figure 3a. With, say, P!10, minute
variations in density, diameter or drag coefficient
among the tentacles should cause them to spread fan-
like under the float, with tentacles with smaller P
hanging at lower angles to the vertical.
1Sin q can be identified with x s0 used in appendix B;P can be identified
with the product pCD,n.
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The force T needed to pull a tentacle is

T ZFg P
CD;t

CD;n

sin2 qCcos q

� �

ZFg P
CD;t

CD;n

K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4P 2

p

2P

 !
2

 

C
1ffiffiffiffiffi
P

p K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4P 2

p

2P

 !
1=2
!
; ð2:5Þ

adjusting the notation with appendix B, this equation
immediately follows (B 22). T is depicted in figure 3
together with its horizontal,

FX ZT sin q; ð2:6Þ

and vertical,

FY ZT cos q; ð2:7Þ

components.
It is evident from figure 3b that the force acting on a

trailing tentacle initially decreases with the trailing
velocity. In fact, for small values of P, equations (2.3)
and (2.5)–(2.7) yield

qZPK
5

6
P 3 C/; ð2:8aÞ

T

Fg

Z 1K
1

2
P 2 C/; ð2:8bÞ

FX

Fg

ZPK
3

2
P 3 C/; ð2:8cÞ

FY

Fg

Z 1KP 2 C/: ð2:8dÞ

An increase in trailing velocity sweeps the tentacle back
(2.8a), increasing the vertical force component, and
hence decreasing the effective ‘weight’ of the tentacle
in the water (2.8d ). Since the angle of the tentacle with
the vertical is still small at this stage, the total force
on the tentacle decreases as well (2.8b), in spite of the
increase in the horizontal force component (2.8c).
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Figure 3. (a) The angle of the tentacle from vertical, (b) the total force needed to drag the tentacle and (c) the horizontal and
(d ) vertical components of that force. Numbers appearing to the right of the respective curves mark the CD,t/CD,n values.
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For very large values of P, the tentacle becomes
almost horizontal, with

qZ
p

2
K

1ffiffiffiffiffi
P

p C/; ð2:9aÞ

and, from that point on, an increase in trailing velocity
increases the forces on the tentacle. Explicitly, for
large P,2

T

Fg

ZP
CD;t

CD;n

C
1ffiffiffiffiffi
P

p C/; ð2:9bÞ

FX

Fg

ZP
CD;t

CD;n

C
1ffiffiffiffiffi
P

p C/; ð2:9cÞ

FY

Fg

Z
ffiffiffiffiffi
P

p CD;t

CD;n

C
1

P
C/: ð2:9dÞ

In the intermediate range of P, there is a noticeable
drop in the horizontal force FX acting on the tentacle
when CD,t/CD,n is smaller than, say, a few hundredths
(figure 3c). At this range of P, an increase in the trailing
velocity sweeps the tentacle sufficiently back to reduce
the cross-flow velocity on the tentacle. Since the
associated increase in the axial velocity may carry
only a limited drag penalty when CD,t/CD,n is small,
there exists a certain range of trailing velocities where
the horizontal force component decreases with increas-
ing trailing velocity. For a typical tentacle of the PMW,
the ratioCD,t/CD,n is approximately 0.01 (appendix A),
2This is not a formal expansion—it includes the leading order term
(with respect to P) containing the ratio CD,t/CD,n, and the leading
order term which is independent of it.
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and, therefore, the decrease in the horizontal force
component is expected for, say, 1!P!10.

Curling a tentacle increases its effective diameter
and hence decreases the effective value of P. This
obviously puts the tentacle at a smaller angle to the
vertical (figure 3a) and reduces tension when P is large
(figure 3b). Reports that the tentacles curl up when
provoked (Totton & Mackie 1960, p. 376) suggest
the possibility that the PMW may intentionally
curl a tentacle when the tension in it crosses a
certain threshold.

Using (2.3)–(2.5) and (2.1), equation (2.6) for the
horizontal force component can be recast as

FX Z
1

2
rv 2dlCH;t; ð2:10Þ

where

CH;t ZCD;t

K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4P 2

p

2P

 !
3

CCD;n

K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4P 2

p

2P 2

 !
3=2

: ð2:11Þ

CH,t can be interpreted as the effective drag coefficient
of the tentacle; it equals CD,n when P is small and the
tentacle is almost vertical, and CD,t when P is large and
the tentacle is almost horizontal (figure 4).
3. TRIMMING THE SAIL

The force exerted on a body moving relative to a fluid
can be loosely separated into lift and drag components;
the former perpendicular to the direction of the flow as
seen from the body, and the latter parallel to it. In order

http://rsif.royalsocietypublishing.org/
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handed PMW sailing on the port tack. The sail (cross-
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to produce lift, the body has to be asymmetric with
respect to that direction. Typically, this implies setting
the body at an angle with the direction of the flow; this
angle is generally referred to as the angle of attack.
Indeed, in light winds, the PMW balances (trims) itself
at the angle of attack of approximately 408 (Totton &
Mackie 1960, p. 322). The possible ways the PMW does
that are considered below.
3.1. Balance of forces in the horizontal plane

A schematic balance of forces in the horizontal plane is
shown in figure 5. The hydrodynamic forces on the
submerged part of the PMW are assumed to provide
drag only and hence act in the direction opposing the
direction of sailing. By definition, a point exists where
these forces produce no couple. This point is called
the centre of effort; it is marked ‘HCE’ in figure 5. The
aerodynamic forces are generally not aligned with
the wind direction, but can be associated with the
respective centre of effort as well; it is marked ‘ACE’ in
figure 5. In equilibrium, i.e. when the PMW is moving
at a constant velocity, the aerodynamic forces are
counterbalanced by the hydrodynamic forces, implying
that the two are equal in magnitude and oppose
each other.

The location of the centre of effort of an asymmetric
lift-producing body is known to move considerably as
the angle of attack changes (this result is recapitulated
in appendix C—see equation (C 27) thereat). In those
cases, it is more convenient to use the notion of the
aerodynamic centre—a geometric point where the
couple remains independent of the angle of attack
(Bisplinghoff et al. 1996, p. 219); it is marked ‘AC’ in
figure 5. The location of the aerodynamic centre is
known to be practically fixed (see equation (C 28)
in appendix C).

Referring to figure 5, the equilibrium conditions
about the hydrodynamic centre of effort (HCE) can be
written as

AxKH cosðaCbÞZ 0; ð3:1aÞ

AzKH sinðaCbÞZ 0 ð3:1bÞ
J. R. Soc. Interface (2009)
and

MKAzDxCAxDz Z 0; ð3:1cÞ
where Ax and Az are the components of the aerody-
namic force along the respective axes; M is the
(aerodynamic) couple about the aerodynamic centre;
H is the hydrodynamic force; a is the angle of attack;
b is the angle between the direction of sailing and the
downwind direction; and Dx and Dz are the respective
distances between the aerodynamic centre of the sail
and the centre of effort of the hydrodynamic forces. The
associated right-handed reference frame has its x -axis
horizontal, connecting the leading and trailing edges
of the sail, and its z -axis horizontal and pointing
to leeward.

The sailing speed v of the PMW (which is a few tens
of centimetres per second) is small when compared with
the wind speed U (which is a few metres per second),
and hence the wind speed relative to the sail is
practically U. Accordingly, the forces on the PMW
can be conveniently represented by

Ax Z
1

2
rAU

2SACx ; ð3:2aÞ

Az Z
1

2
rAU

2SACz ; ð3:2bÞ

M Z
1

2
rAU

2SAcACM ð3:2cÞ

and

H Z
1

2
rv 2SHCH; ð3:2dÞ

where rA is the density of the air; SA and cA are the area
and the chord of the sail; SH is an arbitrary reference
area (e.g. the combined surface area of the tentacles);

http://rsif.royalsocietypublishing.org/
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Cx, Cz and CM are the respective force and moment
coefficients; and CH is the hydrodynamic drag coeffi-
cient. With these, equilibrium conditions (3.1a)–(3.1c)
take on the respective forms

rAU
2SACx Z rv 2SHCH cosðaCbÞ; ð3:3aÞ

rAU
2SACz Z rv 2SHCH sinðaCbÞ ð3:3bÞ

and

cACM ZCzDxKCxDz: ð3:3cÞ
The only parameters that may change with the angle

of attack are Cx and Cz; CM is independent of this angle
by definition of the aerodynamic centre. Hence, the
angle of attack at trim can be obtained as a solution of
(3.3c). Given the angle of attack, the ratio of the first
two equations,

tanðaCbÞZ ðCz=CxÞ; ð3:4Þ
yields the course relative to the wind; the sum of
squares of these equations,

rASAU
2CA Z rSHv

2CH Z 2H ; ð3:5Þ
where

CA Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2

z CC 2
x

q
; ð3:6Þ

yields the speed.
3Stability of a trimmed sail is manifested in maintaining its angle
relative to the wind—a sudden increase in the angle of attack should
produce a restoring couple. In other words, the derivative of the
aerodynamic couple about HCE, CM,HZCMCCxDz/cAKCzDx/cA,
with respect to the angle of attack should be negative. Cx, CM, Dx and
cA are independent of the angle of attack, the first by assumption
(§3.2), the others by definition; Dz slightly increases with the angle of
attack through increasing roll (§4), whereas Cz increases monotoni-
cally with the angle of attack. Hence, for the derivative of CM,H to be
negative, Dx should be positive.
3.2. Forces on the sail

The aerodynamic forces on the PMW sail can be
categorized as shear forces, acting parallel to its surface,
and pressure forces, acting perpendicular to it. The
former contribute mainly to Cx; the latter dominate Cz

and CM, and contribute to Cx. It is shown in appendix C
(see equations (C 25) and (C 29)) that for a sail with
small aspect ratio,

Cz ZCz;aaCCz; �f
�f ð3:7Þ

and

CM ZKCM; �f
�f; ð3:8Þ

where Cz,a, Cz; �f and CM; �f are certain constants and �f is
the ratio of the sail camber to its chord. For the course
of the following discussion, the exact values of these
constants are immaterial—yet it is essential that all are
positive and all are of unity magnitude. Since the
camber of the PMW sail is small, a few per cent chord at
most, the last term in (3.7) can usually be neglected.
The experimental results of Torres & Mueller (2001)
suggest that (3.7) holds up reasonably well to the angle
of attack of 408. We could not find experimental results
to verify (3.8).

The contribution of the pressure loads to Cx is
associated with the wing surface curvature. For a
conventional wing section, this contribution is loosely
divided into the contribution of the leading edge region
and the contribution of the rest of the wing. The former
is known as the leading edge suction, and it tends to
decrease Cx as the angle of attack increases. The latter
is commonly accounted for as a part of the ‘parasite’
J. R. Soc. Interface (2009)
drag, which includes the shear forces as well. It changes
very little with the angle of attack as long as the flow
pattern about the wing remains unchanged. For small
aspect ratio wings, the leading edge suction is com-
monly neglected, leaving Cx practically independent of
the angle of attack. The upper bound of Cx is estimated
in appendix A to be approximately 0.1.
3.3. Trim control

Since Cz changes monotonically with the angle of
attack, while Cx and CM are independent of it, equation
(3.3c) can be rewritten as

Cz Z ðcACM CCxDzÞ=Dx: ð3:9Þ

It manifests that the side force and the angle of attack
at trim are defined by the sail geometry (through CM,
which depends on the sail camber) and the relative
location of the aerodynamic centre of the sail and the
centre of effort of the hydrodynamic forces (through Dx
and Dz).

On the right-hand side of (3.9), the denominator
(Dx) is positive by stability considerations.3 Hence, in
order to obtain positive side force at trim (which is
required to sail on the port tack), the numerator should
be positive as well. In the numerator, Cx is positive
(§3.2). Dz is positive by virtue of the inherent
asymmetry of the PMW’s float. At the same time, CM

is a decreasing function of the sail camber (see (3.8)).
Hence, there is an upper bound, ðCxDzÞ=ðcACM; �fÞ, on
the sail’s camber.

The observations suggest that, with increasing wind
speed (in particular, above 10 m sK1), the angle of
attack gradually vanishes (Totton & Mackie 1960,
p. 322). Equation (3.9) provides three mechanisms that
may explain this change in trim.

There can be a change in CM; smaller CM yields
smaller Cz, and hence smaller angle of attack.
The change in CM is associated with the change in
camber. It can come due to either (passive) aeroelastic
deformation or (active) muscular contraction. There is
probably no way to increase the camber passively with
increasing wind speed. However, since the PMW is
capable of changing its centre of buoyancy through
muscular contraction (Totton & Mackie 1960,
pp. 307, 374), it is plausible that the same mechanism
can be used to change the camber actively.

There can be a change in Cx; smaller Cx yields
smaller Cz. Cx decreases with the increasing wind speed
owing to Reynolds number effects, but the associated
change is estimated to be relatively small (appendix A).

There can be a change in the relative position
between the aerodynamic centre of the sail and the

http://rsif.royalsocietypublishing.org/
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centre of effort of the hydrodynamic forces. In
particular, Cz at trim decreases as Dx increases or Dz
decreases. The relative position of the two centres can
change either due to list (roll) of the float or
redistribution of the hydrodynamic drag. The former
will be addressed in §4. Considering the latter, the drag
is provided partly by large hunting tentacles and partly
by other polyps. Drag coefficient of the large tentacles
decreases with increasing sailing speed (figure 4). Drag
coefficient of other polyps—which, presumably, remain
as a block during sailing—should change very little as
the sailing speed increases. Placing the longer tentacles
aft causes the centre of effort to move forward as the
sailing speed increases, increasing Dx; placing them at
the maximal lateral distance to the side of the sail
causes the centre of effort to move towards the sail,
decreasing Dz.

In order to identify which of these mechanisms are
relevant, consider a few representative figures. As
mentioned already in §3.2, Cx is bounded from above
by approximately 0.1. Judging from the available
drawings (Totton & Mackie 1960, p. 310) the value of
Dz can probably be bounded from above by 0.3cA. To
make the numerator in (3.9) positive (see above), CM

should be greater than KCxDz=cA, approximately
K0.03. At the same time, judging from plate X in
Totton & Mackie (1960), the camber is non-negative,
and hence CM is non-positive. Therefore, the numerator
in (3.9) is bounded between 0 and approximately
0.03cA. But in order to obtain side-force coefficient of
the order of unity, which is to be expected at the angle
of attack of 408, the denominator in (3.9) should be
comparable with the numerator. Hence, Dx should be
a few per cent of the sail chord. These figures imply
that the trim of the PMW is a delicate one, and a
minute shift of the centre of effort of the hydrodynamic
forces or a minute change in the sail camber may
change it completely.

Detailed description of the cormidia found in
Totton & Mackie (1960, pp. 340–346) places the long
tentacles aft and away from the sail. It implies that the
passive trim control based on the tentacles’ drag may
be in use by the PMW. An indirect support to this
conclusion is provided by the sailing speed of the PMW.
In fact, the major part of the transition between the high
and low angles of attack at trim should be completed
when P of its hunting tentacles becomes of the order of
100 (figure 4). With dZ2 mm, CD,nZ1 and CD,tZ0.01,
P equals 100 at approximately 0.3 m sK1 when the
tentacles have a negative buoyancy of 3 per cent, and
approximately 0.4 m sK1 when they have a negative
buoyancy of 5 per cent. These figures are comparable
with the maximal sailing speed of approximately
0.4 m sK1 reported by Totton & Mackie (1960, p. 318).

Having the long tentacles positioned away from the
sail and relatively aft infers that, when they capture
prey, their effect on the trim is just the opposite of what
has been previously discussed—an increase in their
drag changes the trim towards higher angles of attack
and hence amplifies the force on the tentacles. In order
to prevent tearing the tentacles off and to allow pulling
the prey towards the digesting polyps, the sail has to be
‘sheeted out’ (luffed).We believe that the PMWhas the
J. R. Soc. Interface (2009)
option to luff its sail by increasing the sail’s camber
through muscular contraction of the float. A change of
the order of 1 per cent chord—a couple of millimetres—
should suffice to this end (see equation (3.8) and the
paragraph immediately following it).

Passive speed control has no counterpart in the
sailing world, where most autopilots are designed to
keep the course, either relative to the wind or relative to
the Earth, rather than to keep the speed relative to the
water. Yet, presented with the requirement to keep the
speed when drifting on a sea anchor, as in figure 2b, we
can hardly think of a simpler design than that
mimicking the PMW. Tie the sea anchor (representing
here all the polyps other than the hunting tentacles)
relatively forward on the port side, and hang a suitable
non-buoyant long cable on the same side but astern. As
the drift velocity increases, the cable will lift up,
heading the boat into the wind and easing the sail.
4. LIST

As the angle of attack is a consequence of the balance of
forces in the horizontal (x–z) plane, the roll angle (list)
is a consequence of the balance of forces in the vertical
(y–z) plane. A schematic balance of forces in the
vertical plane is shown in figure 6. The horizontal side
force on the sail, Az, is counterbalanced by the
respective component, Hz, of the hydrodynamic drag.
The weight of the float, W, and the effective weight
(weight minus lift) of all other polyps, Hy, are counter-
balanced by the (mainly hydrostatic) lift of the float, B.

The point where the lift acts is marked ‘CB’ in
figure 6. Listing to leeward moves this point to leeward
as well. The list stabilizes when the couple produced by
the lift counterbalances the couple produced by the
aerodynamic forces on the sail–float and the hydro-
dynamic forces on all other polyps. Obviously, increas-
ing Az will increase the list to leeward; conversely,
decreasing Az will change the list to windward.

List to leeward increases Dz, and hence increases Az

by (3.9); in turn, increasing Az increases the list. This
is exactly what happens when a sudden gust hits. Until
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the tentacles lift up and readjust the trim (it should
take about the same time it takes the PMW to sail the
length of its tentacles, approx. 30 s), the increasing
force on the sail increases the list, which increases the
angle of attack, which increases the list further
(Totton & Mackie 1960, p. 322). This scenario reverses
when the wind drops. A sudden lull decreases Az, which
changes the list to windward, which decreases Az even
further, possibly leading to a capsize (Totton &Mackie
1960, pp. 309, 374). A consequence of this amplification
of the list is the existence of minimal wind strength
allowing the PMW to use its sail.

Capsizing appears as a single obstacle that prevents
the PMW from changing tacks (Totton & Mackie 1960,
p. 321). In fact, by increasing the camber of the
sail, the numerator in (3.9) can be made negative,
resulting in negative Az. Negative Az implies sailing on
a starboard tack.
5. COURSE AND SPEED

The course of the PMW relative to the wind is
determined solely by the angle of attack at trim.
From (3.4)

bZ tanK1ðCz=CxÞKa: ð5:1Þ
The largest angle from downwind, b�, is obtained at the
angle of attack a�, which is the solution of db/daZ0.
Since Cx was assumed already to be independent of a,
differentiating the right-hand side of (5.1) with respect
to a yields

Cx

C 2
x CC 2

z

dCz

da
K1Z 0: ð5:2Þ

With Cz given by (3.7), the solution of (5.2) is

C �
z Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cz;aCxKC 2

x

q
; ð5:3Þ

at which

b�ZtanK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cz;aCxKC 2

x

q
Cx

0
@

1
AK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cz;aCxKC 2

x

q
Cz;a

C
Cz;�f

�f

Cz;a

:

ð5:4Þ
Consider typical figures. As already mentioned

above, Cx is of the order of 0.1; Cz;a and Cz;�f are about
unity; �f is a few hundredths, and hence insignificant.
Thus, C �

z is approximately 0.3, corresponding to a� of
15–208 and b� of 50–558. In comparison, at the angle
of attack of 408, equation (5.1) yields b of 40–458, about
the value reported by Totton & Mackie (1960, p. 321).
This means that, by reducing the angle of attack, the
PMWcould have achieved a better course relative to the
wind. It is therefore plausible that the course relative to
the wind was not the aim of the PMW’s design. Rather,
its design was probably aimed at keeping the pull of the
sail as constant as possible (independent of the wind
speed) so as to allow the best possible conditions for the
tentacles to spread out.

In order to estimate the sailing speed, data are
required concerning the hydrodynamic drag H. It
includes the drag of long (hunting) tentacles, Ht, and
the combined drag of all other polyps, Hp. For
J. R. Soc. Interface (2009)
simplicity, the drag of the last group will be approxi-
mated with a simple constitutive relation

Hp Z
1

2
rSpv

2CH;p ZFgP
SpCH;p

dlCD;n

; ð5:5Þ

where Sp is a suitable reference area; CH,p is the
associated drag coefficient; and all remaining quantities
pertain to the average tentacle. The drag of N tentacles
will be approximated as N times the drag of the average
tentacle, i.e.

HtzNFg P
CD;t

CD;n

K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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 !
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p K1C
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1C4P 2

p

2P

 !3=2
1
A; ð5:6Þ

see (2.10), (2.4) and (2.11). With (5.5) and (5.6),
equation (3.5) for the sailing speed can be recast as an
algebraic equation for P,

rASAU
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2NFg

ZP
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3=2

CP
SpCH;p

NdlCD;n

: ð5:7Þ

We assume that a representative (nominal) PMW
(appendix A) has sail area SA of 0.01 m2 and seven
tentacles; the average tentacle is 10 m long, 2 mm in
diameter, has a negative buoyancy of 3 per cent and is
characterized by CD,nZ1 and CD,tZ0.01. These set its
weight in the water, Fg, at approximately 1 g. The drag
area of its digesting and reproductive polyps, SpCH,p, is
guessed as 0.001 m2. With these, the solution of (5.7) is
shown in figure 7. At each value of Cz, the sharp
increase in the sailing speed corresponds to the lifting of
the tentacles towards the horizontal—these are exactly
the conditions where the spreading of the tentacles
is the most effective. The observations of the sailing
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speed reported by Totton & Mackie (1960) are marked
by the circles.4 They inferred that Cz decreases as the
wind speed increases (i.e. the PMW ‘sheets out’ its
sail), and that the stronger winds are hardly optimal for
spreading the tentacles.
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Figure 10. (a–d ) Performance of the nominal PMW with
CMZK0.01 (solid curves) and CMZK0.023 (dashed curves).
The observations reported in Totton & Mackie (1960) are
marked by circles. The multitude of curves in (c) mark
individual tentacles, the lowest corresponding to tentacle 1.
6. AN EXAMPLE

To elucidate the trim of the sail, consider now a more
elaborate model of the PMW. This artificial model is
entirely made up to serve as an illustrating example. In
this model, we guess the centre of effort of the
hydrodynamic forces acting on the block of digesting
and reproductive polyps, differentiate the seven long
tentacles by length and diameter, and specify their
connection points with the float. The geometry
(mimicking the PMW depicted in figure 8) is shown
in figure 9; the associated numbers can be found
in appendix A.

To simplify the solution of (3.5) we invert the
approach of §5 and assume the sailing speed, v, rather
than the wind speed, U, to be the independent variable.
Given v, P for each tentacle immediately follows from
(2.4). The tilt angles of the tentacles follow from (2.3);
the associated drag forces follow from (2.10); the drag of
all other polyps follows from (5.5). The knowledge of
the drag forces allows the HCE to be found; the trim
follows from (3.3c). Once the trim is known, the wind
speed and the course relative to the wind follow from
(3.5) and (3.4). The results of this procedure are shown
in figure 10, once for CMZK0.01 (solid curves) and
once for CMZK0.023 (dashed curves).

The ‘L’-shaped track of the HCE in figure 9 is an
immediate consequence of our placing the thin (and
hence the fastest to lift up) tentacles forward and close
to the sail. As the speed increases and the thin tentacles
begin lifting, the centre of effort moves aft; once the
bigger tentacles (located to the side of the sail) begin
The course in (b) is measured relative to the wind.

4The two higher speed observations are reported in full on their p.
319. The lower speed observation, appearing on their p. 322, lacks the
actual sailing speed. We estimated it from the course direction (408
from downwind) and from the normal to the wind velocity component
of 0.13 m sK1 (1/4 knot).

J. R. Soc. Interface (2009)
lifting, it moves inward. We remind readers that this
is just an example and this track could have been
shaped at will by altering the diameters and the lengths
of the tentacles, their connection points, etc.
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The angular spread of the tentacles is biggest in light
winds (figure 10c). The wind speed at which this best
spreading occurs is influenced by many parameters of
the model, conspicuously by CM, but also by the
negative buoyancy of the tentacles and their diameters.
CM controls the angle of attack; the buoyancy and the
diameters control the sailing speed at which the
tentacles lift up (through P).

The sailing speed rapidly increases in light winds,
from practically 0 at 2 m sK1 to more than 0.1 m sK1

at 2.5 m sK1 (with CMZK0.01). This behaviour was
reported by Totton & Mackie (1960, p. 322); it is an
immediate consequence of the tentacles losing drag as
they lift towards horizontal (§2). A minute decrease in
CM, from K0.01 to K0.023, corresponding to an
increase of less than 1 per cent chord in camber, is
sufficient to luff the sail almost completely—compare
solid and dashed curves in figure 10d.
5Just as any winged slender body configuration (Ashley & Landahl
1985, p. 122).
6Pertinent equations in Raymer (1992) are (12.24), (12.25), (12.27)
and (12.31).
7Pertinent equations in Raymer (1992) are (12.27) as (12.28).
7. CONCLUDING REMARKS

The most conspicuous results of this study can be
summarized in three points as follows.

(i) The tilt angle (from vertical) of a trailing
tentacle increases with the sailing velocity and
decreases with the tentacle diameter. Since the
tentacles are of different diameters, trailing
causes them to spread fan-like in the vertical
plane. The spread angle vanishes both at small
and at large trailing speeds. Using plausible
figures for the diameters, densities and drag
coefficients of the tentacles, the spread angle is
estimated as 10–158 at the same speeds the
PMW were observed sailing.

(ii) The force needed to trail a tentacle at a given
speed decreases as the tilt angle of the tentacle
increases. The tentacles bud from the float in
such a way that this change in drag sheets out
the sail as the tentacles lift up, which serves to
keep the sailing speed in that particular range
where the tentacles spread best. The PMWwere
observed sailing with their sails aligned with the
wind in strong winds.

(iii) The trim of the sail is very delicate and a minute
increase in camber may luff the sail.

We believe that these results can be rationalized by
adopting a hypothesis that the PMW has evolved for
efficient sail-driven trawling: the tentacles’ spreading
obviously increases the likelihood of catching the prey
(Madin 1988; Purcell 1997), whereas the PMW ‘does’
all it possibly can to keep them spread.

We hope that this study will encourage new
observations and measurements that will allow for a
better understanding of this singular colony. A partial
list of missing data includes tentacles’ dimensions,
density and attachment points to the float, float
geometry and drag of all polyps which are not the
hunting tentacles.
J. R. Soc. Interface (2009)
APPENDIX A. THE NOMINAL PMW

A.1. Models

To rationalize the analysis, we define a representative
(‘nominal’) PMW. There are many parameters char-
acterizing a PMW, ranging from its sail area, to the
connection point of the largest tentacle in a specific
cormidium. Unfortunately, many of these parameters
have never been measured. As a result, they had to be
guessed based on our best experience, or deduced
indirectly from other data. The parameters that were
guessed are underlined below. Examples of §§2–4 are
based on the relatively well-established data; the
example of §6 involves a considerable guesswork.
A.2. Air and water data

All examples in the text are based on the standard air
density of 1.225 kg mK3 and seawater density of
1030 kg mK3.
A.3. The sail

Above the water level, the PMW consists of a smooth
float with a corrugated crest (figures 1 and 8). The edge
of the crest makes this combination work as a single
sail by promoting flow separation when set at an angle
to the wind.5

We assume that the projection of the sail (the crest
and the part of the float above the water) on the plane
zZ0 (figure 5) has the area SA of 100 cm2, average
chord cA of 25 cm and height h of 6 cm; the crest has
the surface area Sc of 100 cm2, surface roughness to
length ratio of 1/100 and edge thickness of 7 mm; the
float has the surface area Sf of 100 cm2 and slenderness
ratio of 3 (Raymer 1992, pp. 280–281).

Based on these data, Cx was estimated using
the component build-up method (Raymer 1992,
pp. 279–281), i.e.

Cx Z ðSf=SAÞCx;f CðSc=SAÞCx;c; ðA 1Þ
where Cx,f and Cx,c are the respective drag coefficients.
Assuming a laminar boundary layer on the float, Cx,f

varies6 between approximately 0.03 and approximately
0.01 as the Reynolds numbers (based on the float
length) increase from 2!104 to 2!105; assuming a
turbulent boundary layer the respective range of Cx,f is
between approximately 0.03 and approximately 0.02.
For a 25 cm float, the Reynolds numbers between 2!
104 and 2!105 correspond to wind speeds between 1.2
and 12 m sK1. Assuming a turbulent boundary layer,
and a stagnant wake having about the same thickness
t and width h as the crest’s edge, Cx,c turns out to be
approximately 0.06, independent of the Reynolds
number.7 The contribution of the wake, th/Sc, is
responsible for approximately two-thirds of Cx,c.
These estimates yield Cx between approximately 0.07
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and approximately 0.09 by (A 1). Considering possible
inaccuracy of this estimate, all examples in the text are
based on CxZ0.1.

The side-force coefficient Cz was estimated with
equation (C 23)8 of appendix C using the aspect ratio9

A of 0.7. Cz turns out to be approximately 0.8 at the
angle of attack of 408. The moment coefficient about
the aerodynamic centre, CM, was estimated with
equation (C 29).10 With 1 per cent camber, CM is
approximately K0.02.
Figure 11. The tentacle and the balance of forces on its element.
A.4. Submerged body parts which are
not tentacles

This group includes all polyps which are not the hunting
tentacles and the float. The drag area of this group
(reference area times the drag coefficient) was estimated,
based on the pictures in Totton & Mackie (1960, plate
IX), as 10 cm2. The respective centre of effort was placed
at 1 per cent chord aft of the aerodynamic centre of the
sail (along the x -axis) and 10 per cent chord to windward
(along the negative z -axis; figure 9). The last parameter
was guessed from drawings in Totton & Mackie (1960,
pp. 340–341); the first was adjusted in the range of
5 per cent chord aft to 5 per cent chord forward of the
aerodynamic centre so as to obtain meaningful results.
A.5. Tentacles

Following Totton & Mackie (1960, pp. 340–341), seven
long tentacles were assumed, one in each cormidium.
The average tentacle was assumed to be cylindrical,
10 m long and 2 mm in diameter. No reference could be
found for the density of a tentacle. Based on fishes
(Davenport 2005), it was assumed that the tentacles
have 3 per cent negative buoyancy, but this estimate
obviously needs verification.

The drag coefficient of a circular cylinder in cross-
flow varies between approximately 1.4 and approxi-
mately 1 as the cross-flow Reynolds numbers (based on
the diameter and the cross-flow velocity) vary between
102 and 103 (Batchelor 1990, p. 341). For a 2 mm
cylinder in the water, this range corresponds to the
cross-flow velocities between 0.05 and 0.5 m sK1. At
slower speeds, the drag coefficient dramatically
increases; at higher speeds it remains practically
constant (Batchelor 1990, p. 341). In the examples,
we took CD,nZ1 for all tentacles.

The drag coefficient of a circular cylinder in axial
flow varies between approximately 0.005p and approxi-
mately 0.003p as the axial flow Reynolds number
(based on the length and axial flow velocity) varies
between 106 and 107. This estimate is based on eqn
(12.27) in Raymer (1992, p. 280) under the assumption
of turbulent boundary layer; in this range of Reynolds
numbers, maintaining the laminar boundary layer is
hardly possible. For a 10 m long cylinder in the water,
8In notation of appendix C, CzZ2Fz=ðrSv2Þ.
9For a sail, protruding perpendicular to an impermeable water
surface, aspect ratio is defined as twice the height of the sail squared
divided by its area (appendix C).
10In notation of appendix C, CMZ2M=ðrScv2Þ.
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Reynolds numbers between 106 and 107 correspond to
the axial velocities between 0.1 and 1 m sK1. In the
examples, we took CD,tZ0.01 to represent the upper
range of sailing speeds.

For the example in §6, the seven individual tentacles
were differentiated. Their lengths were uniformly
distributed between 15 and 5 m, the tentacle of
cormidium 1 being the longest. Likewise, their diam-
eters were uniformly distributed between 1 and 3 mm;
again, the tentacle of cormidium 1 being the thickest
(figure 9). The connection points were chosen on a
circle, centred at the aerodynamic centre of the sail; the
respective coordinates (x, z), by cormidium order,
being (8,K34), (0,K35), (K8,K34), (K16,K31),
(K22,K27), (K28,K21) and (K32,K14) per cent
chord relative to the aerodynamic centre of the sail
(figures 8 and 9).
APPENDIX B. THE SHAPE OF A TRAILING
TENTACLE

B.1. Formulation

Consider a tentacle of length l and uniform diameter d
being pulled horizontally through the water by its end.
Let rt and r be the densities of the tentacle and the
water, g the acceleration of gravity and v the (constant)
trailing velocity. The following analysis will be assisted
by the use of dimensionless quantities, with l serving as
the reference length and p rtKrð Þd2g=4 serving as the
reference force per unit length.

We shall adopt a Cartesian coordinate system with
the y-axis pointing along the direction of gravity, the
x-axis opposing the velocity vector, and the
origin fixed at the end of the tentacle by which it is
pulled (figure 11).

The shape of the tentacle is assumed to be defined by
the pair of monotonically increasing functions on the
interval [0,1], x s and ys, such that

x Z x sðtÞ; y Z ysðtÞ; ðB 1Þ
where t is the (dimensionless) distance to the origin
along the tentacle. Accordingly, with prime standing
for a derivative,

x 02
s Cy 02

s Z 1; ðB 2Þ
on (0,1), and

x sð0ÞZ ysð0ÞZ 0: ðB 3Þ
When trailing, the tentacle is affected by the

hydrodynamic and gravity forces. The latter (per unit
length of the tentacle) is simply

Fg Z 1; ðB 4Þ
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it acts along the y-axis. The hydrodynamic force
(per unit length) consists of tangential (axial) Ft and
normal Fn components, assumed to obey the constitu-
tive relations

Ft Z pCt; Fn Z pCn; ðB 5Þ

where

pZ
r

rtKr

2v 2

pgd
ðB 6Þ

is a convenient dimensionless parameter, and Ct and Cn

are the respective hydrodynamic coefficients. Both are
positive, and, in general, are functionals of x s and ys. In
what follows, it will be assumed that they depend on the
local values of x 0

s or y
0
s only.

It is postulated that the tension T in the tentacle is a
monotonic non-negative function on [0,1], vanishing at
the free end, i.e.

Tð1ÞZ 0: ðB 7Þ

T satisfies the pair of equilibrium conditions on (0,1),

Tx 0
s

� �0
Cp Ctx

0
s CCny

0
s

� �
Z 0 ðB 8aÞ

and

Ty 0
s

� �0
Cp Cty

0
sKCnx

0
s

� �
C1Z 0; ðB 8bÞ

representing the y- and x -components of the force
balance on an infinitesimally small element of the cable
(figure 11). We seek the solution of these equations
satisfying (B 2), (B 3) and (B 7).
B.2. General solution

A straightforward solution of equations (B 8a) and
(B 8b) for T and T 0 yields

T Z
pCn

D
x 02
s Cy 02

s

� �
K

1

D
x 02
s ðB 9aÞ

and

T 0
s ZKpCt C

pCn

D
x 00
s x

0
s Cy 00

s y
0
s

� �
C

1

D
x 00
s ; ðB 9bÞ

where

D Z y 00
s x

0
sKx 00

s y
0
s: ðB 10Þ

The sum in the parenthesis on the right-hand side of
(B 9a) equals unity by (B 2); moreover,

x 00
s x

0
s Cy 00

s y
0
s Z

1

2
x 02
s Cy 02

s

� �0
Z 0; ðB 11Þ

by (B 2) as well, and hence

D Z y 00
s =x

0
s ZKx 00

s =y
0
s: ðB 12Þ

Consequently, equations (B 9a) and (B 9b) can be
recast into the respective forms

Ty 00
s Z x 0

s pCnKx 0
s

� �
ðB 13aÞ

and

T 0 ZKpCtKy 0
s: ðB 13bÞ
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Since the tension vanishes at the free end,

x 0
s Z pCn ðB 14Þ

at tZ1, by (B 7) and (B 13a). With Cn being a known
(but still unspecified) function of x 0

s—see the paragraph
immediately following (B 6)—equation (B 14) can be
solved, at least in principle, to obtain x 0

sð1Þ. This value
will be denoted as ‘a’; i.e. x 0

sð1ÞZa satisfies (B 14).
Picking the clue from (B 14), we suggest that

x 0
s Z x 0

sð1ÞZ a ðB 15Þ

on the entire interval (0,1) is a valid solution of (B 13a)
and (B 13b). In fact, in this case, the product Ty 00

s

vanishes on (0,1) by (B 13a) and (B 14). But constant
x 0
s on [0,1] implies constant

y 0
s Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx 02

s

q
Z

ffiffiffiffiffiffiffiffiffiffiffiffi
1Ka2

p
; ðB 16Þ

on (0,1) by (B 2), which, in turn, implies y 00
s Z0. Thus,

(B 13a) is identically satisfied if the tentacle takes on
the shape of a straight line at an angle with the vertical.
This conclusion agrees with the known results (Hoerner
1965, p. 13.20).

This solution can be complemented by integrating
(B 13b) for the tension. With constant y 0

s, it is a linearly
decreasing function

TðtÞZTð0Þð1KtÞ; ðB 17Þ

along the tentacle, where

Tð0ÞZ pCt Cy 0
s Z pCt C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx 02

s

q
ðB 18Þ

is the tension at the end by which the tentacle is pulled.
B.3. Particular solution

Now, consider a particular case when the hydrodynamic
coefficients are given by

Cn ZCD;ny
02
s ZCD;n 1Kx 02

s

� �
ðB 19aÞ

and

Ct ZCD;tx
02
s ZCD;t 1Ky 02

s

� �
; ðB 19bÞ

whereCD,nandCD,t canbe interpretedasdragcoefficients
of the tentacle in cross-flow and axial flow, respectively.
At the pertinent flow regimes (characterized by the
Reynolds number), CD,n is of the order of unity, whereas
CD,t is two orders of magnitude smaller (appendix A).
The variants on the right-hand side of (B 19a) and
(B 19b) follow those preceding them by (B 2).

With (B 19a), the conjunction of (B 14) and (B 15)
takes on the form

x 0
s Z pCD;n 1Kx 02

s

� �
; ðB 20Þ

with the obvious solution

x 0
s Z a Z

K1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C 2pCD;n

� �2q
2pCD;n

; ðB 21Þ

the sign in the numerator is chosen so as to obtain
x 0
sR0.

http://rsif.royalsocietypublishing.org/


(a)

(b)

624 Hydrodynamics of the Portuguese man-of-war G. Iosilevskii and D. Weihs

 on August 16, 2012rsif.royalsocietypublishing.orgDownloaded from 
The conjunction of (B 18), (B 20) and (B 21) yields
the tension

Tð0ÞZ pCD;tx
02
s C

ffiffiffiffiffiffiffiffiffiffiffiffi
x 0
s

pCD;n

s
; ðB 22Þ

and, in turn, the horizontal,

FX ZTð0Þx 0
s ðB 23Þ

and vertical,

FY ZTð0Þy 0
s; ðB 24Þ

components of the force acting on the entire tentacle.
Figure 12. Wing geometry. (a) Top view and (b) side view.
B.4. Uniqueness

A note on the uniqueness of the proposed solution is
in order. To this end, introduce (B 19a) in (B 13a);
this yields

Ty 00
s Z x 0

s pCD;nKpCD;nx
02
s Kx 0

s

� �
: ðB 25Þ

Note that x 0
sZa is the largest positive root of the right-

hand side. Hence, the right-hand side of (B 25) turns
negative if x 0

sOa, and positive if x 0
s!a. Assume, for the

sake of argument, that x 0
sOa. Since the tension cannot

be negative, the negative right-hand side of (B 25)
implies y 00

s !0. With (B 11), this implies x 00
s O0, i.e. a

monotonically increasing x 0
s along the tentacle. But x 0

s

should equal a at tZ1 by (B 14); hence a monotonically
increasing x 0

s implies that x 0
s should be smaller than a

for the entire tentacle length, which contradicts the
initial assumption. The same arguments rule out x 0

s!a.
APPENDIX C. SLENDER SAIL THEORY

The flow field about a sail is obviously affected by the
presence of the water surface. Given the characteristic
dimensions of the PMW’s sail, this surface can be
approximated, with very good accuracy, as planar.
A common technique of finding the flow field in a half-
space bounded by an impermeable planar surface is by
extending the flow field over the entire space and
imposing symmetry with respect to the plane that
previously was the boundary (Milne-Thomson 1996,
pp. 219–220). Thus, the flow field about the sail
protruding above the water surface is approximately
the same as the flow field about a symmetric wing,
comprising the sail and its mirror image, in an
unbounded domain.

The PMW sail is slender and has a substantial
thickness. Yet, as long as it has a distinct trailing edge,
the aerodynamic forces acting on it will be comparable
(of the same magnitude) with those acting on an
infinitely thin slender wing having the same planform.
This statement can be rigorously proved, but the proof
is too long for the scope of this appendix. An indirect
proof is in the well-known equality between the lift of a
thin delta wing and a lift of a cone, having the same
diameter as the span of the wing (Ashley & Landahl
1985, pp. 122–123). Since the derivations involving a
thick winged body are incomparably more complicated
than those involving just a wing, the following
J. R. Soc. Interface (2009)
derivations will address the latter. They will loosely
follow the procedure outlined in Bisplinghoff et al.
(1996, pp. 244–248).

Consider a thin slender wing with swept forward
trailing edge and left–right symmetry moving in an
unbounded domain of fluid (figure 12). A convenient
right-handed Cartesian coordinate system will have its
x -axis pointing backward (roughly, downwind) and
passing through the foremost and aftermost points of
the wing, y-axis pointing to the right and passing
through the leftmost and rightmost points of the wing,
and z -axis pointing upward. Thus, the leading edge of
the wing is the edge of the wing lying forward of the
plane xZ0; the trailing edge is the edge of the wing
lying aft of the same plane. The coordinates of the
foremost, aftermost, leftmost and rightmost points on
the wing are ðxK; 0; 0Þ, ðxC; 0; 0Þ, ð0;Ks0; 0Þ and ð0; s0; 0Þ,
respectively (figure 12).

The outline of the wing’s projection onto the plane
zZ0 can be defined either by specifying its left and
right edges,

y ZKsðxÞ and y Z sðxÞ; ðC 1Þ

or by specifying its leading and trailing edges,

x Z x LEðyÞ and x Z x TEðyÞ; ðC 2Þ

respectively: s : ½xK; xC�/ ½0; s0� is assumed to be
continuous on [xK,0], non-decreasing on [xK,0), piece-
wise continuous and non-increasing on (0,xC] and
vanishing at its edges: sðxKÞZsðxCÞZ0; obviously,
s(0)Zs0. x LE : ½Ks0; s0�/ ½xK; 0� and x TE : ðKs0; s0Þ/
ð0; xC� are assumed continuous and even, with
x LEðGs0ÞZx TEðGs0ÞZ0, x LEð0ÞZxK and x TEð0ÞZ
xC. The chord c of the wing is, by definition, the
distance between its foremost and aftermost points, and
hence cZxCK xK. The span b of the wing is, by
definition, the distance between its leftmost and right-
most points, and hence bZ2s0. The wing area S is
commonly defined as the area of the wing’s projection
onto the plane zZ0; it can be computed using either
(C 1) or (C 2):

S Z

ðs0
Ks0

x TEðyÞK x LEðyÞð Þdy Z 2

ðxC
xK

sðxÞdx: ðC 3Þ

Finally, the aspect ratio of the wing A is defined as
AZb2/S. It will be assumed that A is small when
compared with unity.
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The wing surface will be assumed smooth with no
span-wise curvature; it will be defined by

z Z f ðxÞ; ðC 4Þ

where f is a function on [xK,xC]. It will be assumed that
the first derivative of f is piecewise continuous and small
when compared with unity on (xK,xC), and
f ðxKÞZ f ðxCÞZ0; these imply that f is small when
compared with the wing’s chord.

Now, let this wing move symmetrically at the angle of
attack a with constant velocity v in an unbounded
domain of quiescent fluid of density r (figure 12);awill be
assumed small when compared with unity. The fluid will
be assumed inviscid and irrotational everywhere, except
for an infinitesimally thin vortical wake, postulated to
extend from the trailing edge to infinity. Confining the
solution to the leading order with respect to the angle of
attack, it can be assumed that the wake is rectilinear and
coplanar with the wing for any x in (0,xC].

Let p and m be the pressure and potential jumps
across the wing or wake surfaces. Under the assumption
that the angle of attack is small, the two are related by

pZKrvvm=vx ðC 5Þ

(Bisplinghoff et al. 1996, pp. 246). Since there can be no
pressure discontinuity across the wake, (C 5) implies

vm=vx Z 0 ðC 6Þ

on the wake. The z -component of the aerodynamic
force acting on the wing, Fz, and the couple about
the y-axis, M, immediately follow (C 5) by simple
quadratures

Fz Z rv

ðs0
Ks0

dy

ðx TEðyÞ

x LEðyÞ

vmðx; yÞ
vx

dx ðC 7aÞ

Z rv

ðxC
xK

dx

ðsðxÞ
sðxÞ

vmðx; yÞ
vx

dy; ðC 7bÞ

and

M ZKrv

ðs0
Ks0

dy

ðx TEðyÞ

x LEðyÞ

vmðx; yÞ
vx

x dx ðC 8aÞ

ZKrv

ðxC
xK

x dx

ðsðxÞ
sðxÞ

vmðx; yÞ
vx

dy; ðC 8bÞ

both the equations are correct in the leading order with
respect to the wing’s camber only.

Under the assumption that the aspect ratio of the
wing is small when compared with unity, the problem
of finding the potential jump across the wing’s surface
can be eventually reduced to the solution of the integral
equations (Bisplinghoff et al. 1996, pp. 245),

1

2p6
sðxÞ

KsðxÞ

vmðx; zÞ
vz

dz

yKz
Z vtðxÞ; ðC 9Þ

for each x in (xK,0] and y in (Ks(x), s(x)) and

1

2p6
sð0Þ

Ksð0Þ

vmðx; zÞ
vz

dz

yKz
Z vtðxÞ; ðC 10Þ

for each x in (0,xC) and y in (Ks(x), s(x)).
J. R. Soc. Interface (2009)
The quantity

vtðxÞZ v aK
df ðxÞ
dx

� �
ðC 11Þ

on the right-hand side of (C 9) and (C 10) is the velocity
component normal to the wing surface. The bar across
the integral sign indicates the Cauchy principal value.

The solution of (C 9),

vmðx; yÞ
vy

ZK
2vtðxÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2ðxÞKy 2

p 6
KsðxÞ

sðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2ðxÞKz2

p
yKz

dz

ZK
2vtðxÞyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2ðxÞKy 2

p ; ðC 12Þ

immediately follows by Sohngen inversion (Ashley &
Landahl 1985, pp. 91–93; Bisplinghoff et al. 1996,
pp. 217, 246). Since there can be no potential jump
ahead of (and hence at) the leading edge (Bisplinghoff
et al. 1996, p. 245), integration of (C 12) readily yields

mðx; yÞZ 2vtðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2ðxÞKy 2

q
; ðC 13Þ

for any x in (xK,0] and y in (Ks(x), s(x)).
Returning to (C 10), we note that, in the integral on

the left-hand side, the region where z is in the exterior of
ðKsðxÞ; sðxÞÞ belongs to the wake. On that region, vm/vx
vanishes by (C 6), and hence

v2mðx; zÞ=vx vzZ 0; ðC 14Þ

for any x in (0,xC) and z not in (Ks(x), s(x)), by (C 6).
Thus, differentiating (C 10) with respect to x, one
readily obtains

1

2p6
sðxÞ

KsðxÞ

v2mðx; zÞ
vx vz

dz

yKz
Z

dvtðxÞ
dx

; ðC 15Þ

for each x in (0, xC) and y in (Ks(x), s(x)). Its solution,
by analogy with (C 9) and (C 13), is

vmðx; yÞ
vx

Z 2
dvtðxÞ

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2ðxÞKy 2

q
; ðC 16Þ

for any x in (xK,0] and y in (Ks(x), s(x)). Unfortu-
nately, this equation cannot be integrated in the
general case to obtain m, but once the span and the
camber have been specified, m should follow.

The integral forces acting on the wing are given by
(C 7a) or (C 7b) and (C 8a) or (C 8b). Starting with Fz,
we suggest dividing the integration domain into the
part located forward of the maximal width, and the part
located aft of it. For the first part, we keep the
integration order as in (C 7a); for the second part we
keep it as in (C 7b). Thus,

Fz Z rv

ðs0
Ks0

dy

ð0
x LEðyÞ

vmðx; yÞ
vx

dx

Crv

ðxC
0

dx

ðsðxÞ
sðxÞ

vmðx; yÞ
vx

dy: ðC 17Þ

Noting that m vanishes on the leading edge by (C 13),
integration by parts in the first term readily yields
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Fz Z rv

ðs0
Ks0

mð0; yÞdyCrv

ðxC
0
dx

ðsðxÞ
sðxÞ

vmðx; yÞ
vx

dy:

ðC 18Þ
Upon substituting (C 13) and (C 16) it becomes

Fz Zprv vtð0Þs20 Cprv

ðxC
0
s 2ðxÞ dvtðxÞ

dx
dx: ðC 19Þ

By following the same steps with (C 8a) and (C 8b) one
should find no difficulty in obtaining

M Zprv

ð0
xK

vtðxÞs 2ðxÞdxKprv

ðxC
0
x
dvtðxÞ

dx
s 2ðxÞdx

ðC 20Þ
for the respective couple.

Consider now a particular case of a pseudo-elliptic
wing with outline specified by

sðxÞZ
s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx2=x 2

K

p
; x in ðxK; 0�;

s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx2=x 2

C

p
; x in ð0; xCÞ;

(
ðC 21Þ

and the camber specified by

f Z
4f0
c2

ðxCKxÞðxK xKÞ: ðC 22Þ

With these, (C 19) and (3.9), respectively, yield

Fz Z
1

2
rv 2S

pA

2
aC2pA

f0
c

1K
2xC
3c

� �� �
ðC 23Þ

and

M Z
1

2
rv 2Sc K

pA

3

xK
c
a

�

KpA
2f0
c

xC
c

C
xKð2xCK xKÞ

6c2
K

x 2
C

2c2

� ��
:

ðC 24Þ
For an elliptic wing (xCZKxKZc=2), these further
reduce to

Fz Z
1

2
rv 2S

pA

2
aC

4pA

3

f0
c

� �
ðC 25Þ

and

M Z
1

2
rv 2Sc

pA

6
aK

pA

2

f0
c

� �
: ðC 26Þ

By definition, M is a couple about the y-axis, or,
simply, about the widest point along the wing. It can be
used to refer to any other point along the wing using a
simple translation. For example, the couple M0 about a
point situated on the x -axis at the distance x0 aft of the
widest point is M0ZMCFzx0. Two particular refer-
ence points are of interest. One is the centre of effort—a
point where the couple vanishes. The other is the
aerodynamic centre—a point where the couple is
independent of the angle of attack. The former is
located at

xCE ZK
M

Fz

ZKc
aK3ðf0=cÞ
3aC8ðf0=cÞ

; ðC 27Þ
J. R. Soc. Interface (2009)
the latter is located at

xAC ZK
vM=va

vFz=va
ZK

c

3
: ðC 28Þ

For a cambered wing, i.e. the wing with f0s0, the
centre of effort moves considerably with the angle of
attack, changing from three-eighths of the chord aft
of the widest point at the zero angle of attack to one-
third of the chord forward of the widest point at high
angles of attack. The aerodynamic centre, on the other
hand, is fixed at one-third of the chord forward of the
widest point.

For future reference, we note that the couple about
the aerodynamic centre is

MAC ZM CxACFz Z
1

2
rv 2Sc KpA

17

18

f0
c

� �
: ðC 29Þ

It is obviously negative for a positive camber.
Equations (C 25) and (C 29) were the basis for
equations (3.7) and (3.8) in the text.
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