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Abstract 36 

  Atmospheric deposition of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant 37 

(FDNPP) accident has been observed in the terrestrial environment around the FDNPP site; 38 

however, their deposition in the marine environment has not been studied. The possible 39 

contamination of Pu in the marine environment has attracted great scientific and public 40 

concern. To fully understand this possible contamination of Pu isotopes from the FDNPP 41 

accident to the marine environment, we collected marine sediment core samples within the 30 42 

km zone around the FDNPP site in the western North Pacific about two years after the 43 

accident. Pu isotopes (
239

Pu, 
240

Pu, and 
241

Pu) and radiocesium isotopes (
134

Cs and 
137

Cs) in 44 

the samples were determined. The high activities of radiocesium and the 
134

Cs/
137

Cs activity 45 

ratios with values around 1 (decay corrected to 15 March 2011) suggested that these samples 46 

were contaminated by the FDNPP accident-released radionuclides. However, the activities of 47 

239+240
Pu and 

241
Pu were low compared with the background level before the FDNPP accident. 48 

The Pu atom ratios (
240

Pu/
239

Pu and 
241

Pu/
239

Pu) suggested that global fallout and the Pacific 49 

Proving Ground (PPG) close-in fallout are the main sources for Pu contamination in the 50 

marine sediments. As Pu isotopes are particle-reactive and they can be easily incorporated 51 

with the marine sediments, we concluded that the release of Pu isotopes from the FDNPP 52 

accident to the marine environment was negligible.  53 

 54 
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Introduction 55 

  On 11 March 2011, a massive earthquake with a magnitude of M 9.0 occurred in the 56 

western North Pacific about 180 km off the Fukushima Daiichi Nuclear Power Plant (FDNPP) 57 

in the northeast coast of Japan and it was followed by gigantic tsunami. As a result, power 58 

supplies were lost at the FDNPP and core cooling could not be carried out. This led to 59 

pressure buildups which were relieved in venting actions by operators and by hydrogen 60 

explosions. Consequently, large amounts of radionuclides were released into the environment. 61 

Extensive studies about the distributions and human health impacts of the volatile fission 62 

products, such as 
90

Sr, 
131

I, 
134

Cs, and 
137

Cs in the environment after the accident have been 63 

conducted
1-5

. However, only limited studies have focused on the nonvolatile Pu isotopes in 64 

the environment. Pu isotopes present a high risk for internal radiation exposure via ingestion 65 

of contaminated agricultural crops and seafood products and are important for long-term dose 66 

assessment due to their long half-lives
6,7

. In the FDNPP, Pu isotopes were produced in the 67 

reactor units which used uranium-based nuclear fuels and especially in the Unit 3 reactor, 68 

where 32 mixed-oxide fuel assemblies containing ~6% Pu were initially loaded
8
. Thus 69 

information about the release of Pu isotopes in the environment is also important to 70 

understand the reactor core damages.  71 

  The FDNPP accident introduced radioactive contamination into the marine environment 72 

through the deposition of the radionuclides released into the atmosphere as well as through 73 
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the direct discharge of thousands of tons of radioactive liquid waste
9,10

. As marine products 74 

play an important role in the Japanese diet, seafood safety has attracted considerable public 75 

and scientific concern. In the terrestrial environment around the FDNPP site, the Pu isotopes 76 

released from the accident were detected in soil, litter, dust and aerosol samples after the 77 

accident and the total released amounts of
 
Pu isotopes were estimated

11-14
. However, the 78 

amount of Pu isotopes directly released into the marine environment remains unknown. In the 79 

high level radioactive accumulated water collected at the FDNPP after the accident, high 80 

level radioactivities of Pu isotopes were detected ((5.8-13)×10
-2

 Bq mL
-1

 for 
238

Pu, 81 

(3.0-7.2)×10
-2

 Bq mL
-1

 for 
239+240

Pu, (1.7-3.2)×10
2
 Bq mL

-1
 for 

241
Pu; decay corrected to 19 82 

January 2012)
15

. These values were 6 to 7 orders of magnitudes higher than that of the 83 

seawater in the western North Pacific. Thus attention should be paid to the contamination 84 

situation of Pu isotopes in the marine environment off Fukushima since the FDNPP accident.    85 

  We previously studied Pu distributions in marine sediments and seawater samples collected 86 

in the western North Pacific 30 km off the FDNPP site within a few months to about two 87 

years after the accident and we observed no detectable Pu contamination from the FDNPP 88 

accident in the investigated areas
16-20

. Radiocesium isotopes from the accident have been 89 

widely observed in the marine sediments off Fukushima after the accident
2,21,22

. Pu isotopes 90 

are more particle-reactive than radiocesium and the sediment-water distribution coefficient 91 

(Kd) of Pu in the marine environment is 1×10
5
, two orders of magnitudes higher than that of 92 
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Cs
23,24

. In Irish Sea, where has been contaminated by the discharged liquid radioactive waste 93 

from Sellafield nuclear fuel reprocessing plant, Mitchell et al.
25

 found that the concentrations 94 

of Pu isotopes in the seawater and sediment declined with an availability time of ca. 100 y, 95 

which was at least one order of magnitude longer than that of 
137

Cs. Thus the possible 96 

FDNPP-released Pu isotopes in the marine environment could be more easily incorporated 97 

with the marine sediments and kept there for a long time. Recently Perianez et al.
26

 modeled 98 

that if the discharge of Pu from the FDNPP accident occurred in the marine environment, it 99 

would remain within the 30 km zone around the FDNPP site. Therefore, the Pu isotopes in 100 

the marine sediments in the near coastal areas of Fukushima need to be investigated. 101 

  Pu atom ratios (
240

Pu/
239

Pu and 
241

Pu/
239

Pu) are used as powerful fingerprints for Pu source 102 

identification, as they are known to vary among different sources
27

. The Pu isotopes derived 103 

from the accident have been characterized by a high 
240

Pu/
239

Pu (> 0.3) atom ratio
11-14

, which 104 

makes it easy to distinguish them from global fallout (
240

Pu/
239

Pu atom ratio = 0.18) in the 105 

terrestrial environment
28

. For the marine sediments, however, Pu isotopes around the FDNPP 106 

site could be attributed to global fallout and the Pacific Proving Ground (PPG) close-in 107 

fallout, which was transported by the oceanic currents from the nuclear weapon test sites in 108 

the Marshall Islands to the western North Pacific before the 2011 accident
29,30

. The FDNPP 109 

accident-derived 
240

Pu/
239

Pu atom ratio is higher than the global fallout ratio (0.18) but 110 

similar to that (0.30-0.36) of the PPG source
11,14,29.31

. Thus the determination of another 111 
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fingerprint 
241

Pu/
239

Pu atom ratio is strongly needed for distinguishing Pu sources in the 112 

marine sediments. The 
241

Pu/
239

Pu atom ratio (0.083-0.135)
11,14

 of the FDNPP accident 113 

released Pu is almost two orders of magnitude higher than both the global fallout (0.0011)
28

 114 

and the PPG source (ca. 0.0020)
32,33

 values (
241

Pu decay corrected to 15 March 2011). 115 

However, the 
241

Pu activity in the marine sediments is currently very low (< 5 mBq g
-1

) due 116 

to its short half-life (14.4 y), which makes it difficult to measure. Thanks to our established 117 

sensitive analytical methods based on anion-exchange chromatography and sector field 118 

ICP-MS, 
241

Pu in the marine sediments can be accurately analyzed with sample amounts over 119 

10 g
18

.  120 

   In this work, we collected marine sediment samples within the 30 km zone around the 121 

FDNPP site about two years after the accident to investigate the Pu distribution in the near 122 

coastal marine environment off Fukushima. Pu activities (
239+240

Pu and 
241

Pu) and atom ratios 123 

(
240

Pu/
239

Pu and 
241

Pu/
239

Pu) were determined to give a more comprehensive conclusion 124 

about the possible Pu contamination from the FDNPP accident. The radiocesium activities 125 

(
134

Cs and 
137

Cs) and 
134

Cs/
137

Cs activity ratio in these sediment samples were also measured. 126 

 127 

Methods 128 

Sediment sampling 129 

Sediment core sampling locations (NP2, 37º25.00′N 141º06.00″E; NP1, 37º25.00′N 130 
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141º10.70″E; AN6, 37º16.74′N 141º05.34″E; M01, 37º33.00′N 141º13.08″E; I02, 37º14.00′N 131 

141º13.08″E) were in the western North Pacific within the 30 km zone around the FDNPP 132 

site. Collection was done with a sediment multiple corer during the UM 13-05 cruise (T/S 133 

Umitaka-maru, Tokyo University of Marine Science and Technology) in May 2013. The 134 

closest collection location (NP2) was ca. 5 km off the FDNPP site. The core samples were cut 135 

into 1 cm segments and stored in an on-board refrigerator until they were brought back to the 136 

land-based laboratory. The locations of the sampling sites within the 30 km zone around the 137 

FDNPP site of this study and of the sampling sites outside the 30 km zone in our previous 138 

studies
17,18,20

 are shown in Fig. 1.  139 

 140 

Analytical procedure for radiocesium and Pu isotopes  141 

The sediment samples were first dried at 105 ºC for 24 h. The activities of 
134

Cs and 
137

Cs 142 

were measured by gamma-ray spectrometry using an HPGe detector (GX-2019, Canberra) 143 

and the detection limit was ca. 1 mBq g
-1

. The activities of radiocesium in the sediments were 144 

decay corrected to the sampling date. After the measurement of radiocesium, sediment 145 

samples were ashed in a microwave muffle furnace at 450º C for 5 h to destroy the organic 146 

matter. The ignition losses of the samples were calculated from the weights before and after 147 

the ashing procedure. 148 

About 2-40 g of dried sediment samples were weighed out for Pu analysis. The sample 149 
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preparation procedures for Pu analysis were based on our previous work
18

 and are illustrated 150 

in Fig. S1. Briefly, a sediment sample and 20-40 mL concentrated HNO3 were put in a Teflon 151 

vessel (120 mL) which was then tightly closed. Digestion was done on a hot plate at 160 ºC 152 

for at least 4 h. Then the sample solution was filtered and its acidity was adjusted to that of 8 153 

M HNO3. NaNO2 was added to the sample solution to a concentration of 0.2 M and the 154 

mixture was heated at 40 ºC for 30 min to take Pu to the tetravalent state. After 155 

preconditioning the AG 1X8 resin column with 20 mL 8 M HNO3-0.2 M NaNO2, the sample 156 

solution was loaded onto the column. 50 mL 8 M HNO3 was used for the washing of U, Pb 157 

and Fe and 30 mL 10 M HCl was used for the washing of Th from the column and converting 158 

the resin back to the chloride form. Then Pu was eluted with 40 mL 0.1 M NH4I-8.5 M HCl. 159 

The eluent was evaporated to near dryness in a 100 mL Teflon beaker. 1 mL aqua regia was 160 

added and the mixture was heated to dryness; this addition of acid and heating was repeated a 161 

second time to destroy the organic matter and remove the residual iodine. Then 2 mL 162 

concentrated HCl was added and the mixture was evaporated to dryness once more. After 163 

adding 4 mL of freshly prepared HCl-H2O2 and heating at 40 ºC for 30 min, the sample 164 

solution was ready for loading onto the second AG MP-1 M resin column. The second resin 165 

column was preconditioned with 8 mL HCl-H2O2 and then the sample solution was loaded 166 

onto it. 20 mL 8 M HNO3 and 8 mL HCl were used for the further washing of U and Th, 167 

respectively. Pu was eluted from the AG MP-1 M resin with 16 mL concentrated HBr and the 168 
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eluant was collected in a 30 mL Teflon beaker. After evaporating the sample solution to near 169 

dryness, 1 mL concentrated HNO3 was added and this was heated to near dryness to remove 170 

HBr. The final residue was dissolved in 0.8 mL 4% HNO3 in preparation for analysis. All 171 

reagents were superpure grade and all the water that we used was treated with a Milli-Q water 172 

system (>18.0 MΩ). 173 

The analysis of Pu isotopes was performed on a SF-ICP-MS (Element 2, Thermo Finnigan, 174 

Bremen, Germany). When combined with an APEX-Q high efficiency sample introduction 175 

system, the sensitivity of the SF-ICP-MS was between 1.0-1.5×10
7
 cps ppb

-1
 for 

238
U

+
. The 176 

detailed operational setup and parameters of this analytical system were described 177 

elsewhere
34

. A certified Pu isotope standard solution (NBS-947) was used for mass bias 178 

correction and two marine sediment standard reference materials IAEA-368 and NIST-4357 179 

were used for the analytical method validation. Fig. 2 shows typical spectra of the marine 180 

sediments and the operational blank of the method. Using our Pu separation procedure and 181 

analysis system, we can sufficiently remove U interference from the sediment sample matrix 182 

and Pu isotopes can be reliably determined
18

. 183 

 184 

Results and discussion 185 

The results for Pu and radiocesium isotopes in the marine sediments within and outside the 186 

30 km zone around the FDNPP site are summarized in Table 1. The vertical distributions of 187 
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Pu and radiocesium isotopes and the ignition losses at sampling locations NP2, NP1, AN6, 188 

I02 and M01 are illustrated in Fig. 3. More detailed analytical results are summarized in 189 

Table S1 and S2.  190 

 191 

Radiocesium contamination in the marine sediments 192 

134
Cs and 

137
Cs are two of the major radionuclides released from the FDNPP accident into 193 

the environment. It has been estimated that the total atmospheric release of 
137

Cs from the 194 

accident was 9.9-36 PBq and more than 70% was deposited in the ocean
7,35-37

. In addition, 195 

2.3-27 PBq 
137

Cs was directly released to the sea
10,38,39

. Although Cs is regarded as a 196 

“soluble” element in the marine environment, it can be selectively absorbed by clay minerals 197 

and subsequently deposited on the seafloor.  198 

The activities of 
134

Cs and 
137

Cs in the sediments investigated in this study ranged from 3.0 199 

to 78.4 mBq g
-1

 and from 7.2 to 154.9 mBq g
-1

, respectively (decay corrected to the sampling 200 

date). These values are significantly higher than that of the background level (0-2 mBq g
-1

 for 201 

137
Cs in the surface sediments off Fukushima in 2010) before the FDNPP accident

40
. 202 

Kusakabe et al.
2
 studied the distribution of radiocesium in marine sediments collected 30 km 203 

off Fukushima in 2011 and 2012, and they found that the activities of 
137

Cs in the surface 204 

sediments ranged from 1.7 to 580 mBq g
-1

. Our results for the sediments within the 30 km 205 

zone around the FDNPP site were within their reported concentration range. The highest 206 
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activity of radiocesium in the sediment cores was observed at location I02 southeast of the 207 

FDNPP site. It has been simulated that the contaminated water released from the FDNPP 208 

accident had generally flowed southward from the adjacent area of the FDNPP site in March 209 

and April 2011
10

, which could lead to higher deposition of radiocesium at location I02 than at 210 

other locations even though I02 was the furthest from the FDNPP site among all the sampling 211 

locations in this study. Moreover, the sediments collected at I02 had a higher percentage of 212 

silt and contained a higher amount of organic matter than sediments collected at the other 213 

locations, which would lead to them incorporating more radiocesium from the seawater.  214 

The FDNPP-released radiocesium was characterized by a 
134

Cs/
137

Cs activity ratio of 1 on 215 

15 March 2011
37,41

. In our study, the 
134

Cs/
137

Cs activity ratios for the sediments ranged from 216 

0.82 to 1.24 with an average of 0.99±0.07 (Fig. 4), clearly indicating that these sediments 217 

were contaminated with radiocesium from the FDNPP accident. The inventories of 218 

radiocesium in the sediment core samples were shown in Table S1. The inventories (0-10 cm) 219 

of 
134

Cs and 
137

Cs ranged from 743 to 11162 Bq m
-2

 and from 1663 to 18867 Bq m
-2

, 220 

respectively, not significantly higher than that reported for the sediments collected 30 km off 221 

the FDNPP site
2,21,22

. The ratios of radiocesium inventories in the surface layers (0-3 cm) to 222 

that in the whole sediment cores (0-10 cm) (F0-3) ranged from 0.19 to 0.54. Otosaka et al.
21,22

 223 

also reported that for the sediments in the shallow depth of 100 m in the coastal areas of 224 

Ibaraki and Fukushima, the F0-3 values of radiocesium were less than 0.5.  225 
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 226 

Vertical distribution of Pu activities and inventories 227 

In previous studies
17,18,20

, we determined the distribution of Pu isotopes in the marine 228 

sediments collected 30 km off Fukushima and we found that there was no detectable Pu 229 

contamination originating from the FDNPP accident. The 
239+240

Pu and 
241

Pu activities in the 230 

sediment cores within the 30 km zone around the FDNPP site ranged from 0.25 to 0.97 mBq 231 

g
-1

 and from 0.31 to 1.12 mBq g
-1

, respectively (Table S2), typically lower than that of the 232 

sediments collected outside the 30 km zone as summarized in Table 1. The 
239+240

Pu activities 233 

were comparable with the values (0.7-1.0 mBq g
-1

) observed in the surface marine sediments 234 

off Fukushima in 2008-2010 before the accident
42

. 
241

Pu is regarded as a more sensitive 235 

indicator for the recently released Pu as the background level of 
241

Pu in the environment is 236 

currently very low due to its short half-life (14.4 y). In a location (37º12'N, 141º20'E) close to 237 

I02, a 
241

Pu activity of 0.99 mBq g
-1

 was reported in the surface sediment in 2008, which was 238 

similar with the results we found at location I02 and higher than that observed at other 239 

locations
42

. These results suggested that there were no abnormal values for Pu concentration 240 

in the sediments collected within the 30 km zone around the FDNPP site.  241 

In the marine environment with a high sedimentation rate, usually a subsurface Pu activity 242 

maximum corresponding to the year of 1963, when the largest global fallout Pu occurred, can 243 

be observed
43

. However, in Fig. 3, both the 
239+240

Pu and 
241

Pu activities were almost constant 244 
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in each sediment core from the surface to the investigated depth and no distribution peaks 245 

could be found. As most of the sediments were sandy with low organic matter content, the 246 

bioturbation effect in the sediments was low. Thus the strong coastal current and the 247 

earthquake and tsunami happened in March 2011 could be the main reasons that led to the 248 

sufficient mixing of Pu in these sediments. The inventories of 
239+240

Pu at NP2 (0-10 cm), 249 

NP1 (0-3 cm), AN6 (0-14 cm), M01 (0-7 cm) and I02 (0-10 cm) were calculated to be 52.3, 250 

13.7, 119.3, 37.3 and 102.6 Bq m
-2

, respectively, and they were comparable with that of the 251 

sediments outside the 30 km zone around the FDNPP site observed in our previous study
17

. 252 

The inventories of 
241

Pu at NP2 (0-10 cm), NP1 (0-3 cm) and I02 (0-10 cm) were 66.0, 16.6 253 

and 126.4 Bq m
-2

, respectively. These values are the first reports for vertical distributions of 254 

241
Pu in the marine sediments in the western North Pacific. 255 

 256 

Distribution of Pu atom ratios and Pu source identification 257 

Pu atom ratios (
240

Pu/
239

Pu and 
241

Pu/
239

Pu) have been regarded as powerful fingerprints 258 

for Pu source identification. In soil and litter samples obtained around the FDNPP site, Zheng 259 

et al.
11

 observed that the accident-released Pu isotopes were characterized by high 
240

Pu/
239

Pu 260 

(0.30-0.33) and 
241

Pu/
239

Pu (0.103-0.135) atom ratios. Shinonaga et al.
14

 determined Pu 261 

isotopes in aerosol samples collected 120 km from the plant site a few days after the accident 262 

and they found similar Pu atom ratios (0.32 ± 0.10 for 
240

Pu/
239

Pu and 0.117 ± 0.032 for 263 
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241
Pu/

239
Pu) in these samples. These Pu isotopic composition values could be considered as 264 

the indicator for the FDNPP-derived Pu. The 
240

Pu/
239

Pu and 
241

Pu/
239

Pu atom ratios in the 265 

marine sediments within the 30 km zone around the FDNPP site showed very small 266 

variations, ranging from 0.233 to 0.258 and from 0.0012 to 0.0016, respectively. In Fig. 5, we 267 

plotted the Pu atom ratios in the sediments within 30 km zone around the FDNPP site, in the 268 

surface sediments outside the 30 km zone and in other sources. The values for Pu isotopes in 269 

the Fukushima marine sediments within the 30 km zone around the FDNPP site were far from 270 

the mixing line between global fallout and the FDNPP source but along the mixing line 271 

between global fallout and the PPG source. This result suggested that global fallout and the 272 

PPG close-in fallout were still the two main sources for Pu contamination in the marine 273 

sediments in the near coastal areas of Fukushima after the accident.  274 

The Fukushima accident-derived Pu isotopes were evidenced in the terrestrial environment. 275 

The total amount of
 239+240

Pu released into the atmosphere was estimated to be 1.0-3.5×10
9
 276 

Bq, which was four orders of magnitudes lower than that of the Chernobyl accident
6,13

. If we 277 

assume that half of these Pu isotopes deposited in the sea around the FDNPP site in a circle 278 

with a radius of 100 km and all finally incorporated into the corresponding marine sediments. 279 

We can estimate that the extra inventory of 
239+240

Pu was ca. 0.1 Bq m
-2

; this amount of 280 

239+240
Pu input was negligible compared to the inventory of 

239+240
Pu (around 100 Bq m

-2
) in 281 

the marine sediments before the accident. Therefore, the contamination of Pu isotopes in the 282 
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marine environment from the FDNPP accident through atmospheric deposition could be 283 

small considering the dilution effect of seawater. The direct discharge of radioactive liquid 284 

waste should be the main way for possible Pu contamination from the FDNPP accident to the 285 

marine environment. However, very limited information is available regarding Pu 286 

concentration in the directly discharged radioactive liquid waste from the accident. In our 287 

previous study
19

, we investigated the Pu distribution in seawater samples (collected from 288 

May 2011 to January 2013) in the western North Pacific after the FDNPP accident and found 289 

that both the 
239+240

Pu activities and 
240

Pu/
239

Pu atom ratios were in the range of the 290 

background values before the accident. As the Pu isotopes are particle-reactive and they can 291 

be easily incorporated by sinking particles, Pu distribution in the near coastal marine 292 

sediments can give direct information about Pu contamination in the marine environment. As 293 

no detectable Pu isotopes from the FDNPP accident could be identified in the marine 294 

sediments within the 30 km zone in this study, we concluded that the release of Pu isotopes 295 

from the FDNPP accident to the marine environment was negligible compared with the 296 

background levels. Global fallout and the PPG close-in fallout are the two main sources for 297 

Pu contamination in the marine environment before and after the FDNPP accident. 298 

  It can be seen in Fig. 5, the 
240

Pu/
239

Pu and 
241

Pu/
239

Pu atom ratios in the surface marine 299 

sediments collected outside the 30 km zone around the FDNPP site were slightly lower than 300 

that of the sediments collected within the 30 km zone around the FDNPP site. However, high 301 
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Pu atom ratios (
240

Pu/
239

Pu > 0.27) have been commonly observed in the deeper layer 302 

sediments outside the 30 km zone due to the direct deposition of the PPG close-in fallout
17

. 303 

As discussed before, the strong physical sedimentation mixing process in the near coastal 304 

marine environment resulted in the constant distribution of Pu atom ratios in the marine 305 

sediments within the 30 km zone around the FDNPP site. Based on a simple two-end-member 306 

mixing model
44

, we calculated the inventory-weighted contributions of these two sources for 307 

Pu distribution in the marine sediments investigated in this study. Global fallout and the PPG 308 

close-in fallout contributed 47±3% and 53±3%, respectively to the Pu contamination in the 309 

marine sediments within the 30 km zone around the FDNPP site. The results were similar to 310 

the results (38-43% for the PPG close-in fallout and 62-57% for global fallout) we observed 311 

in the western North Pacific outside the 30 km zone around the FDNPP site
20

. 312 

In this study, for the first time, we investigated the distribution of Pu activities (
239+240

Pu 313 

and 
214

Pu) and Pu atom ratios (
240

Pu/
239

Pu and 
241

Pu/
239

Pu) in sediment core samples 314 

collected in the western North Pacific within the 30 km zone around the FDNPP site after the 315 

March 2011 accident. We provided new information for a better understanding of the 316 

influence of the FDNPP accident on Pu contamination in the marine environment. We found 317 

that the release of Pu isotopes from the accident to the marine environment was negligible to 318 

date. Pu isotopes in the marine sediments originated from global fallout and PPG close-in 319 

fallout. However, in the water intake position of the reactor unit 1, 
238

Pu and 
239+240

Pu 320 
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activities were found to be 0.21 mBq g
-1

 and 1.2 mBq g
-1

 in the surface sediment in July 2011, 321 

respectively, two to three times higher than those in the sediment before the accident
45

. The 322 

238
Pu/

239+240
Pu activity ratio of 0.175 was also higher than that (0.037) of the global fallout 323 

material in Japan
46

. These results revealed the local deposition of the FDNPP derived Pu in 324 

that region although the Pu activities were still relatively low. Presently, 270,000 tons of 325 

radioactive liquid waste are stored in large tanks within the FDNPP site boundary and the 326 

total amounts of 
238

Pu, 
239+240

Pu and 
241

Pu contained in this were estimated to be 3×10
8
 Bq, 327 

1×10
8
 Bq and 1×10

10
 Bq, respectively

47
. Future earthquakes and other unexpected events 328 

could cause leakage of this stored liquid waste and introduce new Pu contamination into the 329 

sea. Therefore, Pu isotopes in the marine environment, especially in the trench or very local 330 

coastal site near the FDNPP site should be continuously investigated.   331 

 332 
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Table 1. Analytical results for Pu isotopes and radiocesium in the Fukushima sediment samples.   482 

Sampling location 
Sampling 

date 
Location 

Water 
depth 
 (m) 

Surface 239+240Pu 
activity  

(mBq g-1) 

Surface 241Pu 
activity  

(mBq g-1)a 

Vertical 240Pu/239Pu  
atom ratio range 

Vertical 241Pu/239Pu 
atom ratio rangea 

Vertical 134Cs 
activity range 

(mBq g-1)b 

Vertical 137Cs  
activity range 

(mBq g-1)b 

Vertical 134Cs/137Cs 
activity ratio rangea 

Within the 30 km zone    

NP2 2013/5/17 37º25.00'N, 141º06.00'E 30 0.29±0.01 0.39±0.05 0.252-0.255 0.0012-0.0016 17.0-28.1 32.8-55.1 0.87-1.07 

NP1 2013/5/17 37º25.00'N, 141º10.70'E 60 0.26±0.01 0.31±0.07 0.250-0.251 0.0014-0.0015 3.0-14.0 7.2-28.5 0.82-1.03 

AN6 2013/5/15 37º16.74'N, 141º05.34'E 30 0.51±0.01 0.65±0.09 0.251-0.256 0.0015±0.0002c 8.2-52.8 17.1-101.3 0.92-1.13 

M01 2013/5/17 37º33.00'N, 141º13.08'E 60 0.34±0.01 0.43±0.04 0.235-0.258 0.0015±0.0001c 3.4-11.1 8.3-24.9 0.85-1.24 

I02 2013/5/20 37º14.00'N, 141º13.80'E 120 0.94±0.01 1.12±0.13 0.244-0.249 0.0013-0.0016 22.4-78.4 52.6-154.9 0.86-1.06 

Outside the 30 km zone          

MC1 2011/7/18 36º28.97'N, 141º29.93'E 1327 1.58±0.03 1.49±0.22 0.236-0.239 0.0015±0.0002c    

MC5 2011/7/19 37º35.01'N, 141º30.95'E 141 0.48±0.01 0.69±0.10 0.201-0.255 0.0016±0.0002c    

ES4 2011/7/18 37º51.96'N, 143º34.52'E 5253 1.23±0.03 1.48±0.26 0.188-0.212 0.0013±0.0002c    

ES5 2011/7/18 37º47.69'N, 143º51.93'E 7047 1.08±0.03 1.03±0.16 0.189±0.013c 0.0012±0.0002c    

FS1 2011/8/2 37º19.97'N, 142º10.05'E 994 2.81±0.04 3.13±0.44 0.224-0.286 0.0014±0.0000 c 10.3 11.0 1.05 

ES2 2011/8/2 37º03.98'N, 142º15.02'E 2138 3.09±0.04 4.02±0.27 0.216-0.247 0.0013±0.0002c    

FS5 2011/8/3 36º00.00'N, 141º20.14'E 1198 3.53±0.10  0.230±0.015c  54.1 58.4 1.04 

F1 2012/7/7 36º29.09'N, 141º30.01'E 1322 1.77±0.05 1.49±0.19 0.232-0.291 0.0014±0.0002c    

K06 2013/1/13 37º20.00'N, 141º40.10'E 300 0.59±0.02 0.93±0.14 0.233-0.253 0.0015±0.0002c    

FDNPP source      0.303-0.330 0.103-0.135   ~1 

Global fallout 
(30-70º N) 

     0.180±0.014 0.0011±0.0002 
   

PPG close-in 
fallout 

          0.33-0.36 0.0018-0.0025 
   

a
Decay for 

241
Pu and 

134
Cs/

137
Cs activity ratios corrected to 15 March 2011. 483 

b
Decay for 

134
Cs and 

137
Cs activities corrected to the sampling date. 484 

c
Only surface samples were measured. 485 

Data for Pu isotopes in the sediment samples outside the 30 km zone around the FDNPP site are cited from Zheng et al.
16

 and Bu et al.
17,18,20

. 486 

Data for radiocesium of FS1 and FS5 (0-1 cm) are cited from Otosaka and Kato
22

. 487 

Data for FDNPP source are results of litter and soil samples cited from Zheng et al.
11

. 488 

Data for global fallout are cited from Kelley et al.
28

. 489 

Data for the PPG close-in fallout are cited from Buesseler et al.
29

 and Muramatsu et al.
31

. 490 

 491 

 492 
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Figure Captions 493 

Figure 1. Map showing the locations for: (a) sediment samples collected within the 30 km 494 

zone around the FDNPP site in this study and (b) sediment samples collected 495 

outside the 30 km zone around the FDNPP site in our previous studies (redrawn 496 

from Zheng et al.
16

 and Bu et al.
17,18,20

). 497 

Figure 2. Typical mass spectra of (a) an operational blank and (b) a sediment sample 498 

analyzed by our method. 
242

Pu was used as chemical yield tracer. 499 

Figure 3. Vertical distributions of 
137

Cs activities, 
239+240

Pu activities, 
241

Pu activities, 500 

134
Cs/

137
Cs activity ratios, 

240
Pu/

239
Pu atom ratios and 

241
Pu/

239
Pu atom ratios in the 501 

sediment core samples.  502 

Figure 4. Results of 
137

Cs activities and 
134

Cs/
137

Cs activity ratios in the marine sediments 503 

(decay corrected to 15 March 2011). The blue dashed line represents the 
134

Cs/
137

Cs 504 

activity ratio fingerprint of the FDNPP accident released radiocesium. 505 

Figure 5. Mixing plot of 
241

Pu/
239

Pu atom ratio vs. 
240

Pu/
239

Pu atom ratio in the Fukushima 506 

sediments, comparison with the Pu compositions of global fallout, FDNPP release, 507 

and the PPG close-in fallout. The closed orange circles (soil and litter samples, 508 

cited from Zheng et al.
11

) and closed black circles (aerosol samples, cited from 509 

Shinonaga et al.
14

) represent the FDNPP source; the closed pink circle represents 510 

the global fallout (cited from Kelley et al.
28

); the closed blue circles represent the 511 

surface sediment samples collected outside the 30 km zone (cited from Bu et al.
18

); 512 

the open black circles represent the vertical distributed sediment samples within the 513 

30 km zone; the closed violet circle represents the Sagami Bay sediment sample 514 

(cited from Zheng and Yamada
48

); the closed wine circles represent the PPG source 515 

(cited from Yamamoto et al.
32

 and Lachner et al.
33

).  516 

 517 
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